Project 4 Description: Red Feather Thermal Energy for Homes

> Team Members: Edwin Beraud Will Legrand Jake Shaw Jeff Macauley

Client: Mark Hall

Project 4: Red Feather's Project of Thermal Energy for Homes

2/7/2019

Presenter: Jake Shaw

Project Description

- Create a sustainable heating solution for homes on the Navajo and Hopi reservations
- Current heating systems are inefficient and dangerous for residents
- Electricity and natural gas is not available to most people on the reservation
- Red Feather Development Group

Figure 1: Navajo and Hopi Reservations [23]

Shingle Roofs vs PV-PCM Roofs

Installation of Shingle Roof vs PV-PCM Roof [8],[29]

Installation of Shingle Roof vs PV-PCM Roof [29]

Project 4: Red Feather's Project of Thermal Energy for Homes 2/7/2019

Presenter: Edwin Beraud

Figure 2: Ecolaris Solar Furnace [25]

Figure 3: Ecolaris Solar Furnace Operation [25]

Project 4: Red Feather's Project of Thermal Energy for Homes

2/7/2019 Presenter: Jeff Macauley

Insulation Types: Fiberglass, Cellulose, Polystyrene, Rockwool, Cotton Each has a different Thermal Resistance (R) Value to display how quickly heat transfers across it.

Figure 4: Fiberglass Batt Insulation in Roof [26]

2/7/2019 Presenter: Will Legrand

Solar Thermix - Phoenix based company that emphasizes in reducing fossel fuel usage through application of phase change materials, solar furnaces

2/7/2019

Figure 5: Solar Thermix Logo [30]

• Supplies heat directly to the panels using either electricity or tubing that carries hot water. Highly efficient but expensive to install.

Figure 6: In-wall radiant heating in a home [27]

Project 4: Red Feather's Project of Thermal Energy for Homes

2/7/2019

Presenter: Jake Shaw

Customer Requirements

- Cannot pose unacceptable health (primarily air quality) or safety (primarily fire) risks to the home occupants or neighbors.
- Must be an improvement from current heating solution (cost savings plus air quality improvement)
- Keeps home at a comfortable temperature in Winter
- Must account for heat loss from home regarding insulation/windows/doors. -Software modeling
- System must be reliable with temperature fluctuations (assuming no cooling requirements)

Engineering Requirements

- Amount of product pollutants produced (10 µg/m3 annually, 30 µg/m3, +/- 5µg/m3)
- Cost of Materials and Installation (\$1200, +/- \$300)
- Thermal Efficiency (70%, +/- 10%)
- Temperature maintained inside home (72 °F, +/- 3 °F)
- Thermal Resistance Value (R 2.2 m^2*K/W, + 0.3 m^2*K/W)
- Battery Backup System (10 hrs, +/- 2 hrs)
- Extended lifespan (10 years +)

House of Quality and Results

House of Quality (HoQ)		1	n				s		
Customer Requirement	Weight	Engineering Requirement	ollutants Produced (µg NO2,SO2 per KWH)	Cost of Materials and Installation (\$)	Thermal Efficiency (%)	Temperature Maintained inside Home (F)	Thermal Resistance Value (R)	Battery Back up System (hrs)	Lifespan
	100%		1	1	†	t	+	Ť	↑.
					(1 115	1
 Cannot pose unacceptable health (primarily air quality) or satety (primarily tire) risks to the nome occupants or neighbors. Must he opinion and the sate of the nome occupants or neighbors. 	20	76 Dr	9	3	1	0	0	1	1
2. Keens here at a comfortable temperature in Winter.	30	20		8	3	0		3	0
3. Average home at a comorable temperature in white	200	70	0		9	2	9	0	0
 A substrate output to mean tops in orm nome related to insulation windows/doors. 5 Sustem must be reliable with temperature fluctuations (assuming no goaling requirements). 	100	20	0		9	3	9	0	0
Absolute Technical Importance (ATI)	10	10	2.55	42	48	2.95	2.75	22	18
Relative Technical Importance (RTI)		1	3.00	4.2	4.0	2.00	3.10	2.2	1.0
Tarret FR values			10 µg/m3 - annually 30 µg/m3 - 24br	\$1 200	70%	72 F	$R = 2.2 m^{12} k/M$	10 brs	10 years
Tolerances of Ers			+/- 5 µa/m3	+/- \$300	+/- 10%	+/- 3 F	+ 0.3 m^2 K/W	+/- 2 hrs	+/- 1 year
Testing Procedure (TP#)		1	Air Quality meter	BOM	Themodynamics	Thermometer	Analytical	TBD	Thermal Cycles

Schedule

PROJECT TITLE	Red Fea	ather				Legend:																														
Project number	4			•	On Track Low Risk Med Risk High Risk Unas										sign	ed																				
Project Lead	Jeff M.	Project S	Project Start Date: 1/22/2019																																	
		Scrolling I	Scrolling Increment: 0					,								E	ohri	iarv	,																	
						22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9								9	10 1	1 12	13	14	15	16	17	18 1	.9 2	0 21	L 22	23	24	25 2	26 27	28						
																	1	Т		1		1 1						1	1							
Milestone Description	Category	Assigned To	Progress	Start	No. Days	т	w 1	F	S	S №	1 Т	w	T F	s	s	мт	w	T	F	s	S N	1 Т	w	Т	F	s	s	м	т	v т	F	s	s	м т	т w	Т
Week 1																																				
5 Sources	Milestone	All	100%	1/22/2019	2	▶	▶																													
Staff Meeting 1	Milestone	All	100%	1/24/2019	1		₽	•																												
Meet the GTA	Milestone	All	100%	1/24/2019	1		P	•																												
Team Charter	Milestone	All	100%	1/25/2019	1			▶																				+	+					+	+	
Week 2																	T				1	1	-				+	+	+	T	T				+	t
Week 2	Milestone	All	100%	1/28/2019	4					₽				\square		-	t			-	+	+	+				+	+	+	+	+		+	-	+	t
Project	On Track	Jake	100%	1/29/2019	9	-		-		-				·						-	+	+	+			-	+	+	+	+	+		+	+	+	+
description	Op Track	All	90%	1/29/2019	0			+	\square								╞			+	+	+	-			-	+	+	+	+	+		+	+	+	+
5 Bench Marks	On mack	All	50%	1/25/2015	5			-		-							+			-	+	-	-				+	+	+	+	-		-	+	+	+
20 sources	On Track	All	90%	1/30/2019	8			_												_	_	-	-			_	_	+	+	+	-		_	_	_	-
Customer Reqs.	High Risk	All	100%	1/30/2019	8													_		_	-	-	-			_	_	-	+	+	-		_	_	_	+
QFD	High Risk	Edwin, Jeff, Will	80%	2/3/2019	4													_		_	_					_	_	_	+	_			_	_	_	1
Budget	Med Risk	Jake	40%	2/3/2019	4																															
Week 3																																				
Meet with Advisors	Goal	All	0%	2/5/2019	4											•	•	٠	٠																	
Insulation Comaprison	Low Risk	TBD	0%	2/5/2019	4																															
Presentation	Milestone	All	80%	2/7/2019	1													₽																		
Week 4																	T				1		T					T	T	1	T					Γ
Teen Mestin-	Low Risk	TBD	0%	2/14/2019	1								+			+							-				+	+		1			1	+	+	t
Home Model	Med Risk	TBD	0%	2/14/2019	4	-		+	\square				-		-	+	+			+	+	+						+	+	+	+		+	+	+	+
Simulation				7 - 4	-																		-					_								1

Project 4: Red Feather's Project of Thermal Energy for Homes

2/7/2019

Presenter: Jeff Macauley

Budget

- No official budget given for this project
- Our client proposed an upfront cost of \$900-\$1500 (includes final design and installation costs)
- We hope to gain sponsorship from companies interested in renewable energy
- Total cost for a low-income family, with sponsorship, should be \$300 or less

Figure 7: Businesses established in Arizona who are interested in solar energy [28]

Project 4: Red Feather's Project of Thermal Energy for Homes

2/7/2019

Presenter: Jake Shaw

Articles

- A. Chel and G. Kaushik, "Renewable energy technologies for sustainable development of energy efficient building", 2017. [Online].
- [2] S. Enibe, "Thermal analysis of a natural circulation solar air heater with phase change material energy storage", Renewable Energy, vol. 28, no. 14, pp. 2269-2299, 2003.
- [3] Y. Zhang, K. Du, J. He, L. Yang, Y. Li and S. Li, "Impact factors analysis on the thermal performance of hollow block wall", Energy and Buildings, vol. 75, pp. 330-341, 2014.

Books

- [4] L. Cabeza and N. Tay, High-temperature thermal storage systems using phase change materials. London: Elsevier/Academic press.
- [5] F. Jager, Solar Energy Applications in Houses, 1st ed. Luxembourg: A. Wheaton & Co. Ltd., Exeter, 1981.

Articles

- [6] Lavinia Gabriela SOCACIU, "Thermal Energy Storage with Phase Change Material," Leonardo Electron. J. Pract. Technol., no. 20, pp. 75–98, 2012.
- [7] L. Cao, D. Su, Y. Tang, G. Fang, and F. Tang, "Properties evaluation and applications of thermal energystorage materials in buildings," Renew. Sustain. Energy Rev., vol. 48, pp. 500–522, 2015.
- [8] Z. Zhou, Z. Zhang, J. Zuo, K. Huang, and L. Zhang, "Phase change materials for solar thermal energy storage in residential buildings in cold climate," Renew. Sustain. Energy Rev., vol. 48, pp. 692–703, 2015.

- [9] J. C. Gomez, "Report: High-Temperature Phase Change Materials (PCM) Candidates for Thermal Energy Storage (TES) Applications," Natl. Renew. Energy Lab., vol. 303, no. September 2011, pp. 1–31, 2011.
- [10] J. Kośny, K. Biswas, W. Miller, and S. Kriner, "Field thermal performance of naturally ventilated solar roof with PCM heat sink," *Sol. Energy*, vol. 86, no. 9, pp. 2504–2514, Sep. 2012.

Books

- [11]A. S. Fleischer, Thermal energy storage using phase change materials: fundamentals and applications.
- [12]T. Bergman, A. Lavine and F. Incropera, Fundamentals of Heat and Mass Transfer, 8th ed. Wiley, 2017.

Articles

[14] W.M. Champion, "Navajo Home Heating Practices, Their Impacts on Air Quality and Human Health, and a Framework to Identify Sustainable Solutions". University of Colorado Boulder. 2017

[15] "NAAQS Table", Clean Air Act, US Environmental Protection Agency

[16] HouseLogic, "Home Insulation Types: Advantages and Disadvantages", REALTORS

Books

[17] B. K. Hodge, Alternative Energy Systems and Applications. Second edition. Wiley. 2010.

[18] K. Jager, O. Isabella, et al. Solar Energy: Fundamentals, Technology, and Systems. Delft University of Technology. 2014.

Project 4: Red Feather's Project of Thermal Energy for Homes

2/7/2019

Articles

- [18] J. Scott, A. B. Brush, J. Krumm, B. Meyers, M. Hazas, S. Hodges, and N. Villar, "PreHeat: controlling home heating using occupancy prediction," Proceedings of the 13th international conference on Ubiquitous computing - UbiComp 11, pp. 281–290, Sep. 2011.
- [19] M. Gopinath, R. Balaji and V. Kirubakaran, "Cost effective methods to improve the power output of a solar panel: An experimental investigation," 2014 POWER AND ENERGY SYSTEMS: TOWARDS SUSTAINABLE ENERGY, Bangalore, pp. 1-4, 2014.

 [20] "Radiant Heating," Department of Energy.
 [Online].Available: https://www.energy.gov/energysaver/home-heatin g-systems/radiant-heating.[Accessed: 03-Feb-2019].

Books

- [21] M. J. Moran, H. N. Shapiro, D. D. Boettner, and M. B. Bailey, Fundamentals of engineering thermodynamics, 8th ed. Hoboken, NJ: John Wiley & Sons, Inc., 2018.
- [22] J. E. Brumbaugh, Audel HVAC fundamentals. Indianapolis, IN: Wiley Pub., 2004.

Project 4: Red Feather's Project of Thermal Energy for Homes 2/7/2019 Presenter: Team

Additional References

[23] "Destination 360," *History of El Morro - Facts about El Morro*. [Online]. Available: http://www.destination360.com/north-america/us/arizona/navajo-nation-map. [Accessed: 03-Feb-2019].

[24] J. Kośny, K. Biswas, W. Miller, and S. Kriner, "Field thermal performance of naturally ventilated solar roof with PCM heat sink," *Sol. Energy*, vol. 86, no. 9, pp. 2504–2514, Sep. 2012.

[25] "Chauffe-air | ÉcoSolaris - panneaux solaires", ÉcoSolaris, 2019. [Online]. Available: https://ecosolaris.com/chauffe-air/. [Accessed: 03- Feb- 2019]

[26] Performance Insulation. 2019. [Online]. Available: https://performanceinsulation.com/insulation. [Accessed: 03-Feb-2019].

[27] "Radiant Heating," *Department of Energy*. [Online]. Available: https://www.energy.gov/energysaver/home-heating-systems/radiant-heating. [Accessed: 03-Feb-2019].

Additional References

[28] "Renewable Energy," *Arizona Business Know How – Arizona Commerce Authority Helps With Business Development*. [Online]. Available: https://www.azcommerce.com/industries/renewable-energy. [Accessed: 03-Feb-2019].

[29]J. Kośny, K. Biswas, W. Miller, and S. Kriner, "Field thermal performance of naturally ventilated solar roof with PCM heat sink," *Sol. Energy*, vol. 86, no. 9, pp. 2504–2514, Sep. 2012.

[30] Solar ThermiX Company Logo